Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 62(4): 956-967, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36734655

RESUMO

The RiPP precursor recognition element (RRE) is a conserved domain found in many prokaryotic ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthetic gene clusters (BGCs). RREs bind with high specificity and affinity to a recognition sequence within the N-terminal leader region of RiPP precursor peptides. Lasso peptide biosynthesis involves an RRE-dependent leader peptidase, which is discretely encoded or fused to the RRE as a di-domain protein. Here we leveraged thousands of predicted BGCs to define the RRE:leader peptidase interaction through evolutionary covariance analysis. Each interacting domain contributes a three-stranded ß-sheet to form a hydrophobic ß-sandwich-like interface. The bioinformatics-guided predictions were experimentally confirmed using proteins from discrete and fused lasso peptide BGC architectures. Support for the domain-domain interface derived from chemical shift perturbation, paramagnetic relaxation enhancement experiments, and rapid variant activity screening using cell-free biosynthesis. Further validation of selected variants was performed with purified proteins. We developed a p-nitroanilide-based leader peptidase assay to illuminate the role of RRE domains. Our data show that RRE domains play a dual function. RRE domains deliver the precursor peptide to the leader peptidase, and the rate is saturable as expected for a substrate. RRE domains also partially compose the elusive S2 proteolytic pocket that binds the penultimate threonine of lasso leader peptides. Because the RRE domain is required to form the active site, leader peptidase activity is greatly diminished when the RRE domain is supplied at substoichiometric levels. Full proteolytic activation requires RRE engagement with the recognition sequence-containing portion of the leader peptide. Together, our observations define a new mechanism for protease activity regulation.


Assuntos
Peptídeo Hidrolases , Sinais Direcionadores de Proteínas , Peptídeo Hidrolases/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Bactérias/química , Peptídeos/química
2.
Biochemistry ; 59(31): 2833-2841, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32659079

RESUMO

DNA is a foundational tool in biotechnology and synthetic biology but is limited by sensitivity to DNA-modifying enzymes. Recently, researchers have identified DNA polymerases that can enzymatically synthesize long oligonucleotides of modified DNA (M-DNA) that are resistant to DNA-modifying enzymes. Most applications require M-DNA to be reverse transcribed, typically using a RNA reverse transcriptase, back into natural DNA for sequence analysis or further manipulation. Here, we tested commercially available DNA-dependent DNA polymerases for their ability to reverse transcribe and amplify M-DNA in a one-pot reaction. Three of the six polymerases chosen (Phusion, Q5, and Deep Vent) could reverse transcribe and amplify synthetic 2'F M-DNA in a single reaction with <5 × 10-3 error per base pair. We further used Q5 DNA polymerase to reverse transcribe and amplify M-DNA synthesized by two candidate M-DNA polymerases (SFP1 and SFM4-6), allowing for quantification of the frequency, types, and locations of errors made during M-DNA synthesis. From these studies, we identify SFP1 as one of the most accurate M-DNA polymerases identified to date. Collectively, these studies establish a simple, robust method for the conversion of 2'F M-DNA to DNA in <1 h using commercially available materials, significantly improving the ease of use of M-DNA.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , DNA/química , DNA/genética , Halogenação , Técnicas de Amplificação de Ácido Nucleico , Transcrição Reversa , DNA/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico
3.
Chembiochem ; 18(8): 816-823, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28160372

RESUMO

Chemical modifications can enhance the properties of DNA by imparting nuclease resistance and generating more-diverse physical structures. However, native DNA polymerases generally cannot synthesize significant lengths of DNA with modified nucleotide triphosphates. Previous efforts have identified a mutant of DNA polymerase I from Thermus aquaticus DNA (SFM19) as capable of synthesizing a range of short, 2'-modified DNAs; however, it is limited in the length of the products it can synthesize. Here, we rationally designed and characterized ten mutants of SFM19. From this, we identified enzymes with substantially improved activity for the synthesis of 2'F-, 2'OH-, 2'OMe-, and 3'OMe-modified DNA as well as for reverse transcription of 2'OMe DNA. We also evaluated mutant DNA polymerases previously only tested for synthesis for 2'OMe DNA and showed that they are capable of an expanded range of modified DNA synthesis. This work significantly expands the known combinations of modified DNA and Taq DNA polymerase mutants.


Assuntos
DNA Polimerase I/química , DNA/síntese química , Taq Polimerase/química , DNA/química , DNA Polimerase I/genética , Manganês/química , Mutação , Engenharia de Proteínas , RNA/síntese química , Transcrição Reversa , Taq Polimerase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...